Index
INDEX

A
AAP (Apollo Applications Program)
See Skylab
Aaron, John, 566
Aberdeen Proving Ground, 12
Ablation, 21–22
ABMA
See Army Ballistic Missile Agency
Abrahamson, James, 313, 356, 402, 549
Acheson, David C., 375
Adams, Leslie F. “Frank,” 366, 376
Advanced Research Projects Agency (ARPA), 24–25
Advanced X-ray Astrophysics Facility (AXAF), 249, 513, 598–99, 603
Aero-Astromodynamics Laboratory, 40, 93, 227
Aeroballistics Laboratory, 40, 47, 94
Aerojet, 280, 288, 291, 320
Aeronautics Laboratory, 212
Aeronomy, 600
Aerospace Daily, 285–86
African Americans
and civil rights at MSFC, 116–25
in Huntsville, 3, 126
in MSFC workforce, 167
Agnew, Spiro T., 150, 275
AHAC. See Association of Huntsville Area Contractors
Air Bearing Mobility Unit, 602
Air Force
early Shuttle studies, 273
requirements for Shuttle, 280
Air Force Rocket Propulsion Lab, 413
Air Force system, 19, 42–45, 64
See also Army Arsenal system
Aircraft Industries Association, 26
Akridge, Max, 274, 276
Alabama A&M University, 119–120, 153
Albert, Frank R., 119
Aldrich, Arnold, 377–78, 400–01
All-up concept, 94
Allen, Lew, 511–12
American Federation of Government Employees (AFGE), 142
and MSFC reductions-in-force (RIFs), 158
American Science and Engineering Corporation, 241, 245
Ames Research Center, 166, 430, 443, 555
Anderson, Jack, 106
Angele, Wilhelm, 194
Antarctica, 179, 202
POWER TO EXPLORE: HISTORY OF MSFC

Apocalypse, 402
Apollo 11, 98–99
Apollo 14, 250
Apollo 15, 107
Apollo 16, 107, 250
Apollo 17, 107
Apollo 4, 135
Apollo 8, 98
Apollo Applications Program (AAP), 137, 139, 533

See also Skylab
Apollo Command Module, 90, 196, 208
Apollo fire, 179, 390
Apollo Logistics Support System, 100
Apollo Program, 115–16, 144
impact on MSFC, 596

See also Lunar landing, Saturn, and Lunar Roving Vehicle
Apollo Telescope Mount (ATM), 137, 139, 157, 184–86, 193–96, 199–200, 207, 214,
234–36, 599
Apollo–Soyuz Test Project, 213, 251
Armstrong, Neil, 99
Army
and Arsenal system, 19–20
Army Ballistic Missile Agency (ABMA), 21–22, 24–25, 40, 52, 80, 83–84, 117,
226–227, 595
and early Space Station concepts, 529–30
and launch of Sputnik I, 22–23
and space policy, 2
restrictions vs. competition with Project Vanguard, 21
transfer to NASA, 1
Army Chemical Corps, 14
Army Missile Command, 413
Army Ordnance Missile Command, 30
ARPA. See Advanced Research Projects Agency
Arsenal system, 39–45, 64–65, 136, 193, 237–38
at Peenemünde, 5–6
attempts to retain at MSFC, 148
background of, 19
demise of at MSFC, 165, 168
Association of Huntsville Area Contractors (AHAC), 119, 122, 124
Astionics Laboratory, 41, 47, 96, 104, 194, 197, 206, 603
Astronaut training, 443
Astronauts, 82, 201, 210

See also Skylab
Astronomy, 599
Astrophysics, 599
Atlantic Missile Range, 23
ATM (Apollo Telescope Mount). See Apollo Telescope Mount and Skylab
Automatic responsibility, 47, 96, 197, 261, 490
B
Balloon flights, 246
Beggs, James, 313, 390, 400, 402, 498–99, 500–02, 504, 509, 556, 566
and Space Station development plans, 551–53
support for Space Station as NASA administrator, 547–48
Belew, Leland, 48, 182–83, 188, 199, 202, 204, 206, 212
Bell Labs, 398
BellComm, 69, 150, 275
Bendix Corporation, 194, 238
Benisimon, Marc, 567
Berglund, Rene, 536–37
Bermuda, 214
Berry, Charles A., 202, 204
Bignier, Michel, 447
Birmingham, Alabama
and civil rights, 118
Black Brant VC rockets, 252
Bledsoe, Ron, 300
Bless, Robert, 501
Boeing, 66, 86–87, 96, 102–03, 105–06, 127, 192, 272, 484, 492, 563, 578
as MSFC contractor on International Space Station, 582
proposal (successful) for MSFC Space Station Work Package 1, 574
Boggs, Hale, 121
Boisjoly, Roger, 358, 364–65, 372–73, 375
Borman, Frank, 536
Bovee and Crail, 297
Boykin, Frank, 122
Bridwell, Porter, 303, 305, 321–22
Brooksbank, William, 534, 537, 541
named to head MSFC Space Station task team, 536
Broussard, Peter, 42, 105, 256
Brown Engineering. See Teledyne-Brown Engineering
Brown, Bill, 284–85
Brucker, Wilbur M., 23, 27
Buchanan, Jack, 375
Budget, federal
Fiscal Year 1971, 157
Fiscal Year 1972, 159
Fiscal Year 1974, 163
Fiscal Year 1981, 454
Fiscal Year 1982, 454
Fiscal Year 1984, 551
Fiscal Year 1988, 579
POWER TO EXPLORE: HISTORY OF MSFC

Building block concept, 93
Bunn, Wiley, 397–98, 403
Bureau of the Budget
and funding for Space Station, 533
Bush, George, 569
C
Cagle, Eugene, 315
California Institute of Technology, 23
Canada
and International Space Station, 581
and participation on Space Station, 563
Cape Canaveral, Florida, 23, 30
Carruthers, John, 252
Carter administration, 310
and threat to close MSFC, 165–66
lack of support for Space Station, 547
Carter, James, 532
Carter, Jimmy
space policy of, 310
Centaur rocket, 45, 85, 138
Cernan, Gene, 107
Challenger, 321, 323
Challenger accident, 339, 379, 389, 419, 508, 511
congressional hearings, 405
impact on Space Station, 566–67
interpretations, 339–40, 348–49, 369–70, 404, 406
joint assembly issues, 395–96
legal issues, 414
media coverage, 391–93
MSFC reorganization, 410–11
NASA investigation, 391
recovery activities, 407–411
reform of launch procedures, 418
safety and quality issues, 397–99, 410–11
schedule pressures, 399–401
See also Rogers Commission, solid rocket motor (SRM) joints, Space Shuttle mission
STS 51–L
Shuttle propulsion redesign, 411–18
Shuttle versus Saturn technical culture, 399
technical investigation, 394–97
Chamber of Commerce (Huntsville), 122
Committee for Marshall Space Flight Center, 122
Chassay, Roger, 252–53

672
Chemical Weapons Service, 3
Chrysler, 80, 84, 127
Churchill, Winston, 8
Civil rights, 115–25
Civil Rights Act of 1964, 121, 125
Civil Service Commission, 119, 141, 143, 159
Cluster concept for S–IVB workshop, 184–85, 188
Cluster engine configuration, 84
Coal mining technology, 255–57, 260
Coates, Keith, 355, 376–77, 395
Cohen, Aaron, 409
Cold War, 52
Collier’s, 180
1952 articles on space travel, 20, 273
von Braun’s 1952 articles, 528–29
Columbia, 317, 457
Combustion instability, 88
Comet Kohoutek, 235
Command economy, 65
Commercialization, 253–54
Compton, Gene, 450
Computation Laboratory, 41, 47, 96, 106
Computer Operations Office, 63
Concept Verification Test (CVT) Program, 541–43
and Space Station definition studies, 431–32
Congress of Racial Equality (CORE), 117
Congressional Budget Office
on Space Station budget, 572
Connor, Bull, 118
Containerless processors, 253
Contractors
management of, 44–45, 193
penetration of, 44–45, 490
Cook, Dick, 283
Cooper, Charles R., 208
Corning Glass, 493
Corporal missile, 19
Corrective Optics Space Telescope Axial Replacement (COSTAR), 516
Cothran, Charles, 571
Craft, Harry, 455, 457, 460
Craig, Jerry, 544
Cremin, J.W., 461
Crippen, Robert, 358, 407, 418
Crisp, Amos, 49
Crumbly, Robert, 577
POWER TO EXPLORE: HISTORY OF MSFC

Culbertson, Philip, 548, 558–61, 567
 and realignment of Space Station work packages, 566
 defies traditional Center strengths in Space Station assignments, 561–62
 on Environmental Control Life Support System management, 564
 on Space Station costs, 565
Cumings Research Park, 129
Curry, Joseph Ben, 118, 121
D
Dahm, Werner, 59
Dannenberg, Konrad, 47–49, 55, 58, 157
Darwin, Charles, 598
Day, LeRoy, 285
Debus, Kurt, 20, 30, 70
Defense Logistics Agency, 397
DeLoach, Tony, 195
Delta launch vehicle, 138
Deming, W. Edwards, 48
Department of Defense, 20, 22, 40
 and civil rights, 119
 and establishment of NASA, 23–28
 and participation in Space Tug, 433–34
 and Space Station planning, 532
 and transfer of von Braun team to NASA, 25–29
Development Operations Division (ABMA), 2
 transfer to NASA, 1, 2, 30
Direct ascent mode
 See lunar landing mode decision
Discovery, 419
Donlan committee, 441
Donlan, Charles, 437
 heads committee advocating Space Station, 533
Donnelly, John P., 223
Dora (concentration camp), 7, 10
Dornberger, Walter, 5, 7, 10, 12, 26
Dornier, 450
Douglas Aircraft Company, 85, 180–81
 See also McDonnell Douglas
Downey, James A., III, 241–42, 474, 475–76, 480, 483, 485, 514
Driscoll, Dan, 285
Drop Tube/Drop Tower, 250–52, 599
Drucker, Peter, 564
Dryden, Hugh L., 4, 26, 28
DuBridge, Lee, 150, 275
Dynamic overhead target simulator (DOTS), 602
Dynamic Test Stand
 and Shuttle testing, 314–15
Dynamics Laboratory, 601
INDEX

E
Earth orbital rendezvous mode
 See Lunar landing mode decision
Earth Orbing Laboratory (EOL), 532
Eastman Kodak, 195, 489, 493, 513
Ebeling, Robert, 364
Edwards Air Force Base, 318
Ehl, James, 206, 208
Einstein’s general relativity theory, 238–40
Eisenhower administration
 and establishment of NASA, 23–28
 and space policy, 2
Eisenhower, Dwight D., 23–24
 and establishment of NASA, 25, 27–28
 at MSFC dedication, 1
ELDO. See European Launch Development Organization (ELDO)
Electromagnetic Radiation (EMR) team, 241
Energy research, 254–60
Energy Research and Development Administration (ERDA), 257, 259
Energy, Department of, 257, 259–60
Enterprise
 at MSFC, 314
Environmental Control and Life Support System (ECLSS), 542, 568
 assigned to MSFC for Space Station, 561–62
 management of on Space Station, 564
 MSFC development work on, 575–76
EOR (Earth-orbit rendezvous)
 and Space Station, 530–31
Equal Employment Opportunity Program (MSFC), 125
ERNO, 445, 457
 selection as prime contractor for Spacelab, 438
ESA. See European Space Agency (ESA)
ESRO. See European Space Research Organization (ESRO)
ESRO/ESTEC, 438
Eudy, Robert G. (Glen), 195, 344–45
European Launch Development Organization (ELDO), 433, 435
European Space Agency (ESA), 439, 442, 457, 482–83, 497, 510
 and Space Station, 563
 and Spacelab Instrument Pointing System development, 448–49
 concerns about Spacelab program, 451–53
 difficulties in Spacelab development, 444–48
European Space Research Organization (ESRO), 433–35, 437–40
 and Instrument Pointing System (IPS) development, 449
European Space Technology Center (ESTEC), 445
Explorer I, 1, 23–24, 226
Explorer II, 24
POWER TO EXPLORE: HISTORY OF MSFC

Explorer III, 24
Explorer satellites, 41, 184, 227
External tank (ET), 271
 redesign, 412
 See Shuttle external tank
Extravehicular activity (EVA), 186–87
F
F–1 engine
 See Saturn engines
Faget, Maxime, 54, 179, 181, 188, 290
 and Shuttle management, 283
Failure Modes Effects Analysis (FMEA), 398, 411–12
Fairchild Corporation, 228
Feynman, Richard P., 370, 392, 399, 401
Fichtl, George H., 461
Filament wound case
 on SRM, 322–23
Finn, Terry, 550
Flat electrical cables, 194
Fletcher, James C., 160–61, 243, 255, 283, 405, 475, 479, 488, 570, 574
 and 1986 Space Station realignment, 569
 and contracting SRB, 290
 and controversy over Thiokol SRM contract, 291
 and Shuttle approval, 285–86
 and Shuttle development, 281–82
 and Space Station funding, 579
 and threat to close MSFC, 165
 chairs Space Station cost panel, 552
 on ET costs, 302
 on Spacelab weight problem, 438
 on SSME development, 296–97
 signs Spacelab Memorandum of Understanding, 437
Flight readiness reviews, 350–51, 418
Flippo, Ronnie, 453, 485
Floyd, Henry B., 203
Fordyce, Donald, 499
Fort Bliss, 12–14, 19
Foster, Clyde, 117–18, 120
Freitag, Robert A., 544, 548
 and industrialization as a justification for Space Station, 545
 on MSFC-JSC competition, 549
Friedman, Herbert, 474
Frosch, Robert A., 165, 259, 301, 310, 316, 488, 548
Fuller O’Brien Company, 354
Future Projects Office (MSFC), 137, 180, 272–73, 529
INDEX

G
Gagarin, Yuri, 81
Geissler, Ernst D., 94
Gemini technology, 196
General Accounting Office (GAO), 141, 251
General Dynamics, 85
Shuttle Phase A study, 275
General Electric, 9, 12, 14, 24
General Motors, 103
George C. Marshall Space Flight Center (MSFC). See Marshall Space Flight Center
German rocket experts, 2–3, 20
and Arsenal system, 19
at Peenemünde, 5–8
German rocketry, 5–8
Giacconi, Riccardo, 245, 474
Gibson, Roy, 445
Gierow, Herm, 444
Girruth, Robert R., 53, 139, 149, 179, 188, 190, 204, 277, 541–42
advocates artificial gravity for Space Station, 535
Glennan, T. Keith, 25–26, 28, 154–55
Global Hydrology and Climate Center, 600
Goddard Space Flight Center (GSFC), 138–39, 141, 166, 184, 226, 231, 238, 248,
252, 324, 453, 475–78, 555, 565, 572, 576
assignment of Space Station work package to, 559
competition with MSFC, 442
Space Station assignments of, 562
Goddard, Robert, 528
Godfrey, Roy, 283, 289, 293
Goldwater, Barry, 121
Gore, Al, 511
Gorman, Harry, 148, 230
GP–A
See Gravity Probe-A
Graham, William, 390, 566–68
Grau, Dieter, 44–45
Gravity Probe-A (GP–A), 238–40
Gravity Probe-B, 598
Gregg, Cecil, 545–46, 563–64, 574
on JSC management of Space Station, 565
Griffin, Jerry, 551, 555, 559–62, 566
Groo, E.S., 165–66
Groupthink, 377
Grubb, H. Dale, 106
Grumman, 243, 281, 574
as Space Station integration contractor, 578
Space Station systems study, 544–45
POWER TO EXPLORE: HISTORY OF MSFC

Guidance and Control Laboratory, 41–42, 94
Guided Missile Center (Army), 21
Guided Missile Development Division (Army), 19
Gulf Stream Drift Mission, 201
H
H–1 engine, 27
Haeussermann, Walter, 46, 94, 195, 197, 204, 399
Hamill, James P., 9, 12–14
Hardy, George B., 308, 345, 349, 353, 371–72, 376, 401, 406
Harper’s Ferry, West Virginia
 and arsenal system, 19
Harrington, James C., 454
Harvard-Smithsonian Center for Astrophysics, 241
Haynes, Joe D., 118, 121
HEAO. See High Energy Astronomy Observatories
Hearn, Glenn, 122, 126
Hearth, Don, 560–62
 1985 critique of Space Station management, 565–66
Heat sink, 21
Hefflin, Howell, 557
Heimburg, Karl, 19–20, 43, 46, 94, 163–64, 399
Heller, Hertha, 15
Hercules Incorporated, 353
Hermes missile program, 19
 termination of, 20
High Energy Astronomy Observatories (HEAO), 137, 157, 241–49, 431
 Arsenal system, 246
 budgetary troubles, 244–45
 conflicts with scientists, 244–46
 descoping, 242–43
 Goddard-Marshall relations, 242
HEAO–A, 243–44, 247–48
HEAO–B, 243, 247–48
HEAO–C, 243
 operations, 247–48
 scientific results, 248–49
Hilchey, John, 443, 529, 531
Himmler, Heinrich, 7, 10
Hinners, Noel, 324, 484–85, 487–88, 561
Hitler, Adolph, 7
 and V–2 development, 8
Hjornevik, Wesley L., 26, 141
Hocker, Alexander, 437–38
Hodge, John, 548, 550, 560, 567
 and “inside/outside” Space Station management, 568–69
 on Space Station costs, 571
Hoelzer, Helmut, 21
Hollings, Ernest, 405
Holmes, D. Brainerd, 56–57
Holt, Denny, 573
on JSC-MSFC cooperation, 577
Honeywell SSME controller, 296–98
Hoodless, Ralph, 456
Hook, W. Ray, 570
Hopson, George, 207, 542, 576–77
Horton, William, 206
Houbolt, John, 55
Housing and Urban Development, Department of, 258
Houston, Cecil, 374–75, 378
Hubble Space Telescope (HST), 603–05
1982 crisis, 497–504
1983 reorganization, 504–07
and closing of MSFC, 475
and Program Development, 474
associate contractors, 479–80, 489, 502
congressional politics, 481–82, 484–85, 500–01, 503
costs, 478–80, 483, 494–97, 503–04, 509
Department of Defense, 490, 502–03, 512
descoping, 495–96
design, 474, 479–80, 483
European Space Agency, 482–83, 485
Fine Guidance Sensor (FGS), 490
flight operations, 476, 486–87
launch, 509
management and communications, 500–03, 505–06
mirror corrections, 515–16
MSFC-GSFC relations, 475–78, 486–89
Optical Telescope Assembly (OTA), 476, 479, 481, 483, 489, 491–92, 497–500, 507–08
personnel cap, 490, 502
pointing and control, 491
primary mirror, 489, 493, 496–497, 500, 510–14
protoflight, 479, 503
repair and replacement, 491–92, 499, 505, 507–08
scientific community, 477, 480–82, 501, 505, 513
Scientific Instruments (SI), 476, 480, 505
scientific results, 515–16
See also Perkin-Elmer and Lockheed Missile and Space
solar panel arrays, 497, 510
Support Systems Module (SSM), 476, 479, 483, 489, 491, 508–09
systems engineering, 476, 496, 506, 510
POWER TO EXPLORE: HISTORY OF MSFC

Huber, William, 544–45
 and studies of a modular Space Station, 538
Human Relations Committee (Huntsville), 122
Humphrey, Hubert H., 123
Humphries, Randy, 561, 575–76
Huntsville Arsenal, 3–4, 14
Huntsville Industrial Center, 41, 86
Huntsville Industrial Expansion Committee, 151
Huntsville Operations Support Center (HOSC), 93, 106–07, 205–07, 210, 389, 391, 458, 462
Huntsville, Alabama, 3, 99, 261
 and impact of MSFC RIFs, 144, 159
 civil rights in, 116–25
 federal influence in, 3–4
 impact of Germans, 14–16
 post-Apollo economy, 151–52
 reliance on federal funding, 128
Hutchinson, Neil, 560–61, 565–66
I
IBM, 47, 91, 127, 194
Incremental politics, 182, 191
Information and Electronic Systems Laboratory, 481
Instrument Pointing System (IPS)
 on Spacelab 2, 462
 See Spacelab
Integrated Launch and Re-entry Vehicle (ILRV) task team (MSFC), 276
Integrated Space Program (NASA, 1969), 150
Interface Control Documents (ICDs), 441
Intergraph, 128
Interior, Department of, 255
Intermediate Range Ballistic Missile (IRBM), 21, 24
International Geophysical Year (1958), 23
International Space Station (ISS), 581–82
Investigators Working Group, 443
IRBM. See Intermediate Range Ballistic Missile
Ise, Rein, 193–94, 196–97, 215, 233
Itek Corporation, 481
J
J.H. Wiggins Company, 399
Jacobi, Walter, 163, 169
James, Jack, 402
James, Lee B., 17, 42–43, 67–68, 94–95, 99
Japan
 and International Space Station, 581
 and participation on Space Station, 563

680
Jean, O.C., 428–29, 441–42
Jet Propulsion Laboratory (JPL), 1, 25–26, 140, 166, 226, 462, 511
and development of Explorer I, 23
Jex, David, 441–42
John F. Kennedy Space Center (KSC). See Kennedy Space Center (KSC)
Johns Hopkins University, 488
Johnson administration, 115
and post-Apollo planning, 137
Johnson Space Center (JSC), 60, 90, 93, 101, 124, 138–39, 166–67, 179, 418
and competition with MSFC over post-Apollo projects
and controversy over lunar landing mode, 55–59
and lunar roving vehicle, 101–04, 106
and man-rating Mercury–Redstone, 80–81
and origins of Spacelab, 427
and reductions-in-force (RIF), 1970-72, 158
and Shuttle management, 281–83, 293
and Space Station planning, 532
and Space Station program definition studies, 536
and split of Space Station work packages, 559–61
as “host Center” for International Space Station, 582
compared with MSFC, 156
competition with MSFC, 139, 274, 279, 431–33, 442, 458, 541–42, 546, 555
competition with MSFC and LeRC over Space Station tasks, 557–62
divides Spacelab responsibilities with MSFC, 436
early Shuttle studies, 273–74
relations with MSFC during Apollo Program, 70
relations with MSFC on Spacelab, 440–41
See also Level II Shuttle Program Office, Skylab
Shuttle Program Office, 283
Space Station studies and proposals, 544–48
Space Station Work Package 2, 562
Spacelab responsibilities of, 441
Johnson, Caldwell, 200, 204
Johnson, Lyndon B., 24, 59, 121
and civil rights, 118–19
Johnson, Roy W., 24
Johnston, Garland, 307–08
Joint Environment Simulator, 417
Joint Spacelab Working Group (JSLWG), 437
Jones, Charles O., 511
Juno, 23–25
See also Saturn I
Jupiter missile, 19, 21, 23
Jupiter-C, 21–22, 24
as Explorer I launch vehicle, 23
K
Kammler, Hans, 10
KC–135 aircraft, 104–05, 203, 251–52, 599
Keathley, William, 486–87
Keller, Sam, 460, 500–01, 505
Keller, Warren, 487
Kennedy administration, 115
and civil rights, 118
creation of, 70
Kennedy, John F., 53, 58–59, 121, 530
and civil rights, 117
Kennedy, Robert F., 118
Killian, James R., Jr., 24
Kilminster, Joe, 374
King, Martin Luther, Jr., 117–18
on ET challenges, 292
on ET design challenges, 302
on MSFC reorganization (1974), 164–65
on Shuttle management and engineering, 294
on SSME engineering challenges, 296
on welding technology, 321–22
on working with Europeans, 444–45
Kleinknecht, Kenneth S., 204
Knott, Karl, 460
Koelle, Hermann, 137, 180, 272, 580
and early Space Station concepts, 529–31
Kraft, Chris, 139, 144–45, 154, 162, 181, 188–89, 201, 362, 402, 405–06
and opposition to MSFC training payload specialists, 443
and Shuttle management, 283
argument for JSC payloads role, 432
on Headquarters pressure on Centers, 313
on MSFC management of Shuttle, 312
on Mueller, 149
on Shuttle financial control, 282
on Space Operations Center (SOC), 546
Krull, Gustave, 209
Kudish, Henry, 102
Kuettner, Joachim P., 81–82
Kurtz, H. Fletcher, 206
Kutyna, Donald J., 378
L
Labor unions, 61–63

682
INDEX

Laboratories, 40–42, 66–67, 197–98
 and automatic responsibility, 47
 reorganization of (1974), 164
Lacy, Lew, 251
Ladish Company, 362
LAGEOS
 See Laser Geodynamic Satellite
Lake Logan meeting, 101, 182, 188
Lanchpad 39B, 378
Land surveys, 255
Langley Research Center (LaRC), 30, 55, 191, 275, 474, 570
 and Space Station planning, 532
Large space telescope (LST), 137, 157
 See also Hubble Space Telescope
Laser Geodynamic Satellite (LAGEOS), 236–38
Launch Operations Center
 See Kennedy Space Center
Launch Operations Directorate (NASA), 30, 154
Launch Operations Laboratory, 42, 61–62
Lead Center
 decision on Space Station, 554–55
 JSC assigned Space Station, 557
 MSFC and Spacelab, 439
 MSFC assigned for Spacelab, 435–37
 MSFC designated for Spacelab, 428–33
 MSFC responsibilities on Spacelab, 448
 NASA’s assignment of post-Apollo responsibilities, 539–43
Lead Center concept, 183
 and Shuttle development, 281–83
Lead laboratory system, 197–99
Lee, Thomas J. (Jack), 317, 391, 435, 549, 573, 580–82
 and workforce on Spacelab, 445
 as Spacelab program manager, 437, 439–40
 on assignment of Space Station work packages, 559
 on communications with Europeans over Spacelab, 440
 on inefficiency of Space Station interfaces, 578
 on MSFC as Spacelab Lead Center, 428
 on Space Station funding instability, 579
 on Spacelab Instrument Pointing System (IPS), 448–49
Lehrer, Tom, 135–36
Lester, Roy, 462
Letterman, David, 511
Level I Shuttle Program Office (NASA HQ), 347, 351, 353, 356, 358, 360, 363–64,
 367, 377–78, 400–01, 405, 407, 411–12, 418
Level II Shuttle Program Office (JSC), 347, 351, 353, 360–61, 377–78, 400–01,
 407–08, 411–12, 418
POWER TO EXPLORE: HISTORY OF MSFC

Level III Solid Rocket Booster Project Office (MSFC), 355, 358
Lewis Research Center (LeRC), 85, 137, 257–58, 320, 555, 565, 572
assignment of Space Station work package to, 559
competition with JSC and MSFC over Space Station tasks, 557–59
Space Station assignments of, 562
Lilly, William, 290, 496
Lindley, R.N., 447–48
Lindstrom, Robert, 16, 293, 305, 318, 345, 349
Littles, J. Wayne, 207, 318, 419
Lockheed, 272, 291, 413, 484, 489, 495–96, 506, 508–09, 574
Shuttle Phase A feasibility study, 275
Loewy, Raymond, 200
Loftus, Joseph, 101, 549–50
Logsdon, John, 402, 434, 511
Lombardo, Joe, 16–17
Lord, Douglas, 431, 434, 438, 440, 454, 458, 464
on Spacelab Instrument Pointing System (IPS), 449
Lousma, Jack, 204
Lovingood, Judson, 320, 352–53, 392, 395, 419
Low, George, 101, 124, 149, 160, 162, 278, 281–82, 289, 485
on artificial gravity in Space Station, 535
on payload responsibilities, 437
LTV, 138
357, 359, 371, 376–78, 392–93, 397, 401–05, 429, 476, 481–82, 487–90, 494–95,
and MSFC diversification, 428
and MSFC role in life sciences, 444
and MSFC Spacelab lead, 432
and Program Development Organization, 146–47, 150
and Shuttle management, 294–95
and Space Station planning in Program Development, 534
background, 17
compares MSFC and JSC, 154
on Concept Verification Test Program (CVT), 541
on European participation in Sortie Can, 434
on Martin Marietta ET management, 305–06
on MSFC retrenchment, 168–69
on project planning, 52
on Sortie Lab, 436
on Spacelab arrangement with Europeans, 440
on testing, 46
on threat to close MSFC, 165, 167
retirement, 406, 570
Lunar landing mode decision, 53–59, 100, 180
Lunar Module, 101–02, 184–85
Lunar orbital rendezvous
 See Lunar landing mode decision
Lunar Roving Vehicle, 57–58, 100–07
Lunar soil studies, 104–05
Lund, Robert K., 374
Lundin, Bruce T., 211, 223
Lundquist, Charles, 16, 213
Lunney, Glynn, 353, 440–41
Lyles, Garry, 419
Lyndon B. Johnson Space Center. See Johnson Space Center (JSC)
M
Madison County, Alabama
 and civil rights, 116–17
Magnetospheric physics, 600
Mailer, Norman, 48, 50, 74, 98
Main engines (Shuttle). See Shuttle main engines
Man-computer Interactive Data Access System (McIDAS), 599
Man-in-Space-Soonest, 24
Man-on-moon decision, 53
Manned Orbiting Laboratory (MOL), 532
Manned Spacecraft Center (MSC). See Johnson Space Center (JSC)
Manufacturing Engineering Laboratory, 42, 47, 194, 250
Mark, Hans, 313, 356, 402, 547–49, 551, 557
Marman, Richard A., 17
Mars mission, 150–51, 166
 and von Braun, 152
Marshall Advisory Committee, 121
Marshall Earth Science and Applications Program, 600
Marshall Management Council, 409
Marshall Space Flight Center (MSFC), 2
 1963 reorganization, 66
 advanced studies (1980s), 598
 and civil rights, 116–25
 and competition with JSC over post-Apollo projects, 540–43
 and funding in 1960s, 60–61
 and International Space Station, 582
 and legacies of Apollo Program, 107–08
 and liquid vs. solid booster question, 284–86
 and management of Saturn Project, 66–68
 and publicity for Mercury-Redstone, 82
 and Shuttle development, 271–325
 and Shuttle management, 281–83
 and Space Station program definition studies, 536
POWER TO EXPLORE: HISTORY OF MSFC

and split of Space Station work packages, 559–61
and unions, 61–63
Apollo Program at, 596
Army Arsenal system, 39–44, 64–65, 87, 211
attempts to gain management of post-Apollo projects, 539–43
background experience related to Space Station, 527
changes due to Apollo Program, 59–71
compared with JSC, 156
competition with Goddard Space Flight Center (GSFC), 442
competition with Johnson Space Center (JSC), 139, 274, 279, 431–33, 442, 457, 541–42, 546, 555
competition with JSC over Space Station tasks, 557–62
competition with other Centers, 555, 557–62
collaborations with Space Station, 580–81
culture of, 39
dedication of, 1, 30–31
demise of arsenal system at, 165
development of Spacelab, 427–64
diversification, 179, 216, 225–26, 229–33, 258, 260–62, 597
dedication to Spacelab, 427–64
early Shuttle studies, 273–74
engineering vs. science, 226, 231, 233
expansion of role in space science, 443–44
impact of Carter budgets, 310
inter-Center competition, 231
laboratories, 597–98
management of Shuttle contracts by, 312–14
management of SRB contracts, 311
payload planning for Spacelab, 441–44
performance as Lead Center on Spacelab, 464
personnel in 1960s, 63–64
physical appearance of, 40, 61
post-Apollo adjustments, 596–97, 604–05
post-Apollo manpower crisis, 140–44
post-Apollo planning, 136–40
post-Apollo reorganization at, 144–48
reduction-in-force (RIF), 1970–72, 158–61
relations with JSC on Spacelab, 440–41
relations with NASA Headquarters, 537–38
reorganization of (1974), 164–65
reputation during von Braun years, 153–55
reorganization at, 167–69
scientific strengths, 597
Space Station studies and proposals, 544–48
Space Station Work Package 1, 562
Spacelab Mission Operations Control facility, 463
summary of major activities, 595–98
threat to close, 136, 165–67, 290
under Rees, 157–58
Marshall, George C., 28–29
Marshall, Mrs. George C., 29–30
Marshall, Robert (Bob), 59, 147, 153, 156, 164, 275, 313, 358–59, 403, 408, 429,
 545–46, 548–49, 551, 555, 557
 on boosting SSME power rating, 320–21
 on Lucas’s Shuttle management, 295
 on purpose of Space Station, 544–45
 on reasons for Space Station, 527–28
 on SSME development, 296
Martin Marietta, 193, 234, 313, 321, 412, 563
 and ET development, 302, 304–06, 308
 MSFC concerns about ET management, 305–06
 proposal (unsuccessful) for MSFC Space Station Work Package 1, 574
Mason, Jerald E., 374
Massachusetts Institute of Technology, 241
Massey, John, 529–31
Materials and Processes Laboratory, 492–93, 601–02
Materials research, 249–54
Mathews, Charles W., 202, 536
 and Phillips review of Space Station management, 568
 on artificial gravity in Space Station, 535
Matrix management, 164, 261, 411, 478
May, Karl, 12
McCarty, John, 273, 300–01, 376–77
McCool, Alex, 344–45, 349, 355, 409–10
McCurdy, Howard, 182, 511, 548
McDonald, Allan, 374–75, 400
McDonnell Company, 81
McDonnell Douglas, 138, 193, 211, 280, 433, 578
 as SRB subcontractor, 309, 311
 Shuttle Phase A feasibility study, 275
 Space Station program definition study, 536–37
 Space Station systems study, 544
McDonnell Douglas Technical Services Company (MDTSC), 413, 450
McDonough, George, 147, 188, 190, 197, 261
 on MSFC reorganization (1974), 164–65
McElroy, Neil, 22, 24, 28
McGlathery, David M., 120
McIntosh, Ron, 285
McMillan, L.C., 119–20
Medaris, John B., 52
POWER TO EXPLORE: HISTORY OF MSFC

and launch of Sputnik I, 22–23
and transfer of von Braun team to NASA, 25–29
command of Army Ballistic Missile Agency, 21
Mercury-Redstone rocket, 26, 80–82
Merritt Island, Florida, 42
Messerschmitt-Bölkow-Blohm (MBB), 438
Michoud Assembly Facility, 63, 86, 121, 291, 293
and ET, 303–04
Microgravity research, 249–54
See also materials research
Mikulski, Barbara, 511
Miller, John Q., 345–46, 349–50, 355, 404
Mir, 582
Missile Firing Laboratory (ABMA), 30, 70
See also Kennedy Space Center
Missile gap, 52, 93
Mission to Planet Earth, 600
Mississippi Test Facility, 63, 86, 92
Mitchell, Edgar, 107
Mitchell, Jesse, 474–76
Mitchell, Royce, 417
Mittelwerk, 7, 8, 10
Mode decision
and Space Station, 531–32
Module concept, 183
Mondale, Walter, 310
Moore, Jesse, 400, 401, 566, 569
Moquin, Joe, 403
Morea, Saviero “Sonny,” 87–88, 101–02
Morgenthau, Henry, 9
Morton, Rogers C.B., 255
Morton-Thiokol Incorporated (MTI)
and capture feature, 353
and SRB testing, 309–10
and SRM joint tests, 341, 344–45, 350, 362
awarded SRM contract, 291–92
O-Ring Task Force, 364–66, 369
SRM redesign, 413–418
teleconference, 371—74
testimony, 392
Mrazek, William A., 94
MSFC. See Marshall Space Flight Center
MTI
contractual issues, 365–66, 368–69
and advocacy of Shuttle, 274–75

688
and choice between Shuttle and Space Station, 536
and civil rights at MSFC, 121
and Integrated Space Program, 150
and MSFC as Spacelab Lead Center, 428
and origins of Spacelab, 427
and Phillips review of Space Station management, 568
and post-Apollo planning, 151
attitude toward MSFC and JSC, 149
on artificial gravity in Space Station, 534-35
See also all-up testing, Skylab
 on ET design challenges, 302
 on Shuttle project management, 294
Mulroney, Brian, 563
Multiple docking adapter (MDA), 185, 193, 207
Murphy, James T., 431-33, 477, 484, 542
Murray, Bruce, 140
Musgrave, Story, 402
Mutch, Thomas, 494
Myers, Dale D., 279, 285, 407, 436, 475, 540-42
 and cutting Space Station costs, 572
 and Shuttle management, 281
N
NACA. See National Advisory Committee for Aeronautics
NASA. See National Aeronautics and Space Administration
NASA Management Council, 68, 407
National Advisory Committee for Aeronautics (NACA), 3-5, 144
 and long-range planning for space, 530
 as predecessor agency to NASA, 24-25
National Aeronautics and Space Act (1958), 25
National Aeronautics and Space Administration (NASA), 1
 and budget reductions, post-Apollo, 136
 and civil rights, 116-25
 and management of Space Station, 536-37, 547-62
 and reductions-in-force (RIF), 1970-72, 158-61
 and Skylab, 181, 202
See also George Mueller
budget, early 1980s, 454
considers closing MSFC, 165-67
establishment of, 23-28
Propulsion Division, 362-63
tension between Centers and HQ, 549-50, 553-55
National Aeronautics and Space Council, 25
National Research Council (NRC), 323, 411, 413, 416
1987 Space Station review, 573-74
POWER TO EXPLORE: HISTORY OF MSFC

National Science Teachers Association, 232
National Space Technology Laboratories (Bay St. Louis, MS), 299, 301
Naugle, John L., 184, 442, 486
 on distribution of Spacelab projects, 453–54
Naumann, Robert, 18, 250
Naval Research Laboratory, 234, 241
 Project Vanguard, 20
Nazi Party, 7, 9–10
Neutral buoyancy simulator, 187–88, 208–10, 212, 492, 516
Nevins, Clyde, 308, 319
New Orleans, Louisiana, 63
Newell, Homer, 139
Nichols, Jack, 306, 321
Nixon administration, 160, 535
 and Shuttle decision, 430
Nixon, Richard M., 150, 157, 275
 and approval of Shuttle, 284–85
 on goals for space program, 279–80
 space policy of, 537
Nordhausen, 7, 9
North American Air Defense Command (NORAD), 214
North American Aviation, 89–90, 272
 See also Rocketdyne
North American Rockwell, 280, 288, 433
 Shuttle Phase A feasibility study, 275
 Space Station program definition study, 536
Nova launch vehicle, 54–55, 137
Nurre, Gerald, 510
O
O’Connor, Edmund, 67, 90
O’Dell, Robert “Bob,” 474, 477–78, 481, 486–87, 514
O-ring Task Force
 See solid rocket motor (SRM) joints, O-Ring Task Force
O-rings
 See solid rocket motor (SRM) joints, O-rings
Oakwood College, 120
Oberth, Hermann, 5, 528
Odom, James, 44, 59, 89–90, 283, 317, 321, 506–08, 580
 and Space Station funding, 579
 as associate administrator for Space Station, 578–79
 on complexity of Space Station management, 564
 on ET production program, 302–04
Office of Defense Mobilization Science Advisory Committee, 24
Office of Management and Budget (OMB), 281, 310
Office of Manned Space Flight (OMSF), 56, 140, 144, 159, 179, 181–82, 282, 293, 456

690
and early Shuttle planning, 274
and Space Station, 534
and Space Station planning, 532
Office of Space Flight, 546
Office of Space Science, 455
Office of Space Science and Applications (OSSA), 139–40, 474, 501
Olivier, Jean, 490, 513–14
Orbital Hardware Simulator Facility, 602
Orbiter (Shuttle), 271
Ordnance Guided Missile Center, 16, 19
Ordnance Missile Command, 25
Ordnance Missile Laboratory, 19, 21
Organization and Management section (NASA), 144
ORING computer model of SRM joint, 361
OSS–1 (Spacelab mission), 456
OSTA–1 (Spacelab mission), 455–56
P
Paetz, Robert, 159
Paine, Thomas O., 148–50, 152, 155, 157, 160, 275, 281
and Space Station, 534
Parker Seal Company, 346
Parker, Robert, 463
Parnell, Thomas, 246
Payload Crew Training Center (PCTC) (MSFC), 443
Payload Data Bank study, 432
Payload Operations Control Center (POCC), 442, 457–58, 461
Payload Planning Office (MSFC), 441–42
Payload Requirements Board (NASA), 436
Payload specialists, 443
Payload studies, 431
Payloads
MSFC enhances management responsibilities for, 436–37
Peenemünde, 5–8
arsenal system at, 19
British bombing attack, 1943, 7
Pellerzi, Leo, 142
Peoples, Jerry, 367
Perkin-Elmer (PE), 194, 237, 481, 489, 492–95, 497–500, 506–08, 511–14
See also Hubble Space Telescope (HST)
Pessin, Mike, 281, 303
Phased project planning, 147
Phillips, Sam, 407
and review of Space Station management, 567–69
Pickering, William H., 23
Pogo effect, 95–98, 100
Power to Explore: History of MSFC

Pohl, Henry, 16
Popular Science, 49
Post-Apollo planning, 181
Potate, John, 311
Powell, Luther, 548, 555, 561, 570, 573, 580
and Space Station management, 568
as MSFC Space Station project manager, 563
heads Space Station Concept Development Group (CDG), 551–52
on JSC management of Space Station, 565
on negotiating Space Station assignments with JSC, 560
on Space Station power module, 546–47
Powers, Ben, 350, 377, 379
Pratt & Whitney, 85, 280, 288, 320
protest over SSME contract award, 288–89
Pregnant guppy, 92
Preliminary Design Office (MSFC), 430
President’s Committee on Equal Employment Opportunity, 118
Presidential Science Advisory Committee (PSAC), 24, 56, 58, 186
Productivity Enhancement Facility, 602
Program Development Office (MSFC), 102, 146–47, 150, 225, 229, 255, 258, 545–46, 597
advocacy of MSFC payload work, 429–30
and payload planning, 441–42
and Shuttle planning, 282
and Sortie Lab, 436
and Space Station planning, 534
and studies of a modular Space Station, 538
Project Adam, 24–25
Project Cannon Ball, 237
Project Hermes, 9, 12
Project High Water, 227–28
Project Horison, 52, 180, 530
Project management methods, 65–67
Project Mercury, 25–26
Project Orbiter, 20
Project Overcast. See Project Paperclip
Project Paperclip, 8–12
Project Pegasus satellites, 93, 184, 212, 227–28
Project Saturn, 27
Project Vanguard, 20–21, 23, 25
Propulsion and Vehicle Engineering Laboratory, 41, 96–97, 197
Propulsion Laboratory, 410, 601
Protoflight concept, 240, 244, 479, 503
PSAC. See Presidential Science Advisory Committee
Public Affairs Office (MSFC), 49

692
INDEX

Q
Quality and Reliability Assurance Laboratory, 44, 46
Quality Laboratory, 42, 47, 237, 397
Quality methods, 43, 45–46
See also test methods
statistical risk assessment, 45–46
Quality Office (MSFC), 397–98
Quarles, Donald A., 25
R
Randolph Products Company, 354
Raney, William P., 312–13
Ray, Leon, 345–46, 349, 353
Reagan, Ronald, 260, 390, 393, 547, 556, 563
Redesign of SRM
See solid rocket motor (SRM) joints, redesign
Redhouse Technical Society, 18
Redstone Arsenal, 1–3, 14, 16–17, 20, 26, 30, 314
Redstone missile, 40
Redstone Ordnance Plant, 3
Redstone rocket, 19, 25
reliability testing of, 20
See also Mercury-Redstone
Redstone Technical Society, 18
Redstone Test Stand (“poor man’s” test stand), 18, 20
Reduction-in-force (RIF), 135
at MSFC, 1967–68, 142–44, 158
at MSFC, 1970–72, 158–61
and competition with JSC over Sortie Can, 431
and liquid vs. solid booster question, 285
and Shuttle cost management, 287
and Shuttle management, 279–80
as MSFC director, 156–58
on ET development, 292–93
on flight anomalies, 100
on MSFC RIFs, 161
relationship with von Braun, 156–57
strategy for MSFC payloads role, 432
Reflective null corrector, 511–12
Regan, Donald, 390
Relativity, theory of, 238–40
Reorganization
of MSFC (1974), 164–65
POWER TO EXPLORE: HISTORY OF MSFC

Research and Applications Module (RAM), 282, 430, 432
Research Projects Laboratory (MSFC), 137, 227, 249
Rice, Bill, 348
Richards, Ludie, 182, 206
Richardson, Jerry, 507
Ridgway, Matthew B., 14
Riegle, Donald, 405
Riehl, William, 374
RIF. See Reduction-in-force
Robertson, John, 17
Rocketdyne, 280, 320
and SSME development, 296–301
selection as SSME contractor, 288–89
Rocketdyne Division of North American Aviation, 53, 80, 83, 87–88, 89–90, 96–97
Rocketdyne Division of Rockwell International, 403, 412
Rockwell, 290
and SSME development, 297
Rogers Commission, 339–40, 348, 352, 360, 369, 373, 375–76, 378, 390–93,
396–97, 399, 401–04, 406
Rogers, William P., 339, 390, 392, 396
Roland, Alex, 402
Roman, Nancy, 184, 488
Roosevelt, Franklin D., 8
Rudolph, Arthur, 67, 95
and concentration camp labor, 7
Rummel, Robert W., 368
Russia
and International Space Station, 581
Rutland, Cary, 419
S
S–IC Test Stand, 79, 91
Sanderson, Art, 17, 117
Santa Susana, 296–97
Saturn booster, 26–27
Saturn C–1
See Saturn I
Saturn C–1B. See Saturn IB
Saturn engines
F–1, 53, 79, 83, 85, 87–88
H–1, 84
J–2, 85, 89, 96–98
Saturn I, 52, 83–84, 93, 129, 186
origins of, 25
Saturn IB, 83, 93–94, 228–229, 237

694
Saturn instrument unit, 91, 93
Saturn launch vehicles, 46, 59, 83, 179
 Block I missions, 93, 228
 Block II missions, 93
 checkout systems, 91
 launches, 92–100
 testing, 91–92, 94–95
 transportation fleet, 92
Saturn Program, 118
 economic impact of, 126–129
 impact of completion on MSFC, 136
Saturn Program Control Center, 68
Saturn stages
 S-IC, 79, 85–86
 pogo effect, 95–97
 S-II stage, 44, 88–90, 96–98, 100
 S-IVB, 84–85, 93–94, 96–98, 228
 and Skylab, 44, 180–81, 184, 186–87, 196, 205
Saturn Systems Office, 65
Saturn V, 47, 53–54, 57–58, 79, 94, 129, 186–87, 190, 205
 as symbol, 108
 first launch, 95, 135
 launch described by Norman Mailer, 98–99
Saturn V Dynamic Test Stand, 92, 250
Saturn V Program Office, 67–68
Schardt, Alois W., 483
Scheurer, James H., 405
Schmitt, Harrison (Jack), 107, 258–59
Schomburg, August, 30
Schwartz, Dan, 244
Schwinghamer, Robert, 198–99, 203, 206, 208, 322, 410
 on relations with contractors, 313
 on Shuttle, 325
 on Shuttle testing vs. Apollo testing, 299
Science and Engineering Directorate, 16
 and management of SRB, 292
Science and Engineering laboratories, 601
Scott, David, 107
Scout, 138
Seamans
 as head of NRC Space Station review, 573
Seamans, Robert C., 141, 150, 275, 532
Searcy, Robert B., 127
Senate Committee on Aeronautical and Space Sciences, 29
Shea, Joseph F., 56–57, 69, 532
POWER TO EXPLORE: HISTORY OF MSFC

Sheldon, Charles, 155
Shepard, Alan, 82, 107
Shuttle Projects Office (MSFC), 293, 351
Shuttle System Payload Data Study, 436
Siebel, Mathias P., 47, 250–51
Silverstein, Abe, 53, 85, 89, 185, 535
Simmons, William K., 193, 200, 204
Skylab, 44, 58, 137, 157, 180
accident investigation, 211–12
and MSFC’s diversification, 229
Apollo Telescope Mount, 193–95, 199, 234–236
arsenal system, 193–195, 199
as a step toward Space Station, 527, 533
as symbol, 216
biomedical technology, 202–204
Center competition, 179, 181–83, 188–89, 199–205, 215
cluster concept, 185
communications and control, 192
conservative engineering, 195–96
contractors, 192
design of, 184–91
development of, 191–205
division of responsibilities, 139
dry workshop, 189–90
funding of, 196
habitability, 200–02
launch configuration, 192
lessons learned, 212–13
management responsibility, 183, 196–97, 211
microgravity research, 250–51
operations of, 204–05, 212
origins of name, 191
planning for, 180–84
reentry, 213–15
rescue efforts, 205–12
scientific experiments, 232–36
See also Apollo Telescope Mount (ATM)
spent stage workshop, 180, 182, 184, 186
student experiments, 232
Skylab 1, 205
Skylab 2, 205, 208, 210
Skylab 3, 210
Skylab 4, 235
Smith, Gerald, 413–14, 417

696
Smith, Jim, 366, 376
Smith, Robert, 475, 503
Smithsonian Astrophysical Observatory, 236, 238, 239
Smoot, Charlie, 119
Sneed, William, 59, 68, 255, 282, 287, 393, 400, 429
Snoddy, William, 17–18, 227, 546
Society of Automotive Engineers, 365
Solar energy technology, 257–60
Solar physics, 600
Solid rocket booster (SRB), 271, 290, 316
 assigned to MSFC, 282
 development of, 308–11
 elimination of thrust termination, 290–91
 MSFC management of contract, 292
 ocean impact damage, 318–19
 recovery system, 308
Solid rocket motor (SRM), 289–90
Solid rocket motor (SRM) joints
 assembly procedures, 354, 357
 burst tests, 343–44
 capture feature, 353, 363, 415
 close-out, 368
 contractual issues, 365–66
 critical items list, 347–48, 351–53, 363
 design, 340–42
 filament wound case, 353
 joint configuration, 341–42
 joint rotation, 343–46, 348, 352–53
 joint shimming, 344
 launch constraint, 360–61
 leak check, 342, 354–55, 361
 O-ring Task Force, 362, 364–366, 369
 O-rings, 316, 341–42, 346–47, 363
 post-accident redesign, 412–18
 post-accident testing, 416–18
 pre-accident joint redesign, 362–64
 pressure to launch, 375–76
 putty, 351–52, 354, 356–57, 363
 qualification of, 347–48
 referee test, 365
 statistical analysis, 359, 361, 372–74, 398–99
 structural tests, 345–46
 subscale tests, 356
 teleconference, 370–78
POWER TO EXPLORE: HISTORY OF MSFC

temperature issues, 347, 357–59, 362–63, 370–74, 392
test flaws, 348
versus Saturn testing, 349
Solid Rocket Motor Branch, 345, 349, 365
Sortie Can/Sortie Lab, 430–34
and influence on Spacelab, 431
costs, 436
European participation in negotiated, 434–36
European Phase A studies, 436
MSFC in-house definition studies, 435
negotiation of Memorandum of Understanding with Europeans, 435, 437
Sortie Lab Task Force (NASA), 436
South Atlantic Anomaly, 194–95
Southern Pine Beetle, 255
Soviet Union, 28
and launch of Sputnik I and II, 22–23
Space and Rocket Center, 129
Space Processing Applications Rockets (SPAR), 252–53
Space Science Board of the National Academy of Sciences, 241
Space Sciences Laboratory, 41, 104–05, 179, 194, 212, 230, 233–34, 474
Space Shuttle, 604
approval of, 284
assignment of orbiter and booster development, 277
budget, 284
configuration, 271–86
constraints on development, 274–75, 279–81, 284
costs, 278, 287–88, 316, 323–24
development of, 271–325
early MSFC reusable vehicle studies, 272
early studies, 273
influence on Spacelab development, 440–41
launch rates, 323–24
maiden flight of, 317–18
management, 281–83, 293
modifications after first flight, 318–23
MSFC project management, 294–95
NASA rejects European participation in, 434
origins of the concept, 274
Phase A alternate Space Shuttle concepts studies, 280
Phase A feasibility studies, 275
Phase B systems studies, 279–86
Phase C/D development, 288
precursors, 271–72
program management, 287–88
recovery system, 318–19
selection of contractors, 286–93

698
testing, 313–15, 317
testing program compared to Apollo, 299
See also solid rocket booster (SRB); Space Shuttle external tank (ET), Space Shuttle main engines (SSME)
Space Shuttle boosters
liquid vs. solid, 284–86
Space Shuttle external tank, 316
configuration of, 283–84
contract to Martin Marietta, 293
design challenges, 302, 304–05
development of, 302–08
modifications after first flight, 321–22
MSFC concerns about Martin Marietta, 305–06
origins of the concept, 281
specifications, 292–93
test program, 306–08
welding technology on, 322
Space Shuttle main engines, 271
assigned to MSFC, 282
attempts to increase power rating, 320–21
controversy over selection of Rocketdyne, 288–89
development of, 288, 296–301
eyear concepts, 273
engineering challenges of, 296, 299–301
modifications after first flight, 319–21
Pratt & Whitney protest, 288–89
redesign, 412
synchronous whirl rotor problem, 299
testing of, 299, 315, 317
turbine blade problem, 301, 319–20
Space Shuttle Management Council, 418
Space Shuttle Mission Management Team, 418
Space Shuttle missions and SRM joints
STS 41–B, 354–55
STS 41–D, 357
STS 41–G, 357
STS 51–B, 359–63
STS 51–D, 354
STS 51–I, 367
STS 51–J, 367
STS 51–L, 339, 360, 367, 370–79
See also Challenger accident
STS 61–A, 367, 372
STS 61–B, 367
STS 61–C, 367

POWER TO EXPLORE: HISTORY OF MSFC

STS–13 (41-C), 355
STS–2, 351–52
STS–8, 354
STS–9, 354
Space Shuttle orbiter, 281, 283
Space Shuttle Program, 161, 166
Space Shuttle Range Safety Ad Hoc Committee, 399
Space Shuttle Task Team (MSFC), 283
Space Shuttle Verification/Certification Propulsion Committee, 347–48
Space Station, 604–05
 1986 Configuration Critical Evaluation Task Force (CETF), 570–71
 1986 reorganization of, 567–69
 1993 redesign, 581
25-kilowatt power module (MSFC proposal), 546–49
Architecture Control Documents (ACD), 577
artificial gravity debate, 534–35
assessment of program to 1990, 579–81
assessment of work package split, 559–60
attempt to divide development tasks, 549–50
budget, 552–53, 565–66, 576
Concept Development Group (CDG), 551–52
congressional challenges to, 579
costs, 570–73, 579
deferral and redefinition after Shuttle approval, 537–43
development work, 575–77
division of responsibilities, 556–62
dual keel as base configuration, 563–64
early conceptions of, 528–31
ESA participation on, 563
establishing management of, 549–53
field Center relations with NASA Headquarters, 536–37
habitation module, 576
impact of costs on program, 528
impact of politics on, 580–81
initiating Phase C/D, 572
Interface Control Documents (ICD), 577
international participation on, 563
justification for, 544–45
laboratory module, 576
life support systems, 541–43 (See also Concept Verification Test Program (CVT); Environmental Control and Life Support System (ECLSS))
management of, 553
Manned Orbital Systems Concept (MOSC), 544
MSFC Source Evaluation Board for Space Station, 574
Phase A conceptual studies, 533
Phase B definition studies, 533–34

700
Phase C/D, 577
planning, 1974-84 (evolution vs. revolution), 543–47
post-Apollo proposals for, 532–37
power tower adopted as reference configuration, 562–64
presidential approval, 556
program definition studies, 536
Program Planning Working Group (PPWG), 551
programmatic complexity of, 528
Science and Applications Platform (SASP), 547
Space Operations Center (SOC) (JSC proposal), 546, 548–49
systems integration, 577–79
threats to program in late 1980s and 1990s, 579–81
water for, 575–76
Space Station Control Board (SSCB), 563
Space Station Freedom, 527, 579
Space Station Management Colloquium (1983), 553–56
Space Station Projects Office, 273
Space Station Projects Office (MSFC), 563
Space Station task group, 550, 553
Space Station task team (MSFC), 544–45
Space Systems Laboratory, 603
Space task group (1969), 150, 275, 276–77, 279
Space task group (STG), 30, 139
See Johnson Space Center
Space Telescope (ST)
See Hubble Space Telescope
Space Transportation System. See Space Shuttle
Space Tug, 431, 433
NASA rejects European participation in, 434
Spacelab, 166, 253, 282, 603–04
and Skylab, 236
and Space Station, 464
Astro–1 mission, 463
benefits to MSFC and NASA, 427
budget problems, 463–64
corresponds over ESA performance, 444–48
costs, 440, 451–53
D–1 (German mission), 463
development of, 437–40
impact of budget cuts on, 454
Instrument Pointing System (IPS) development, 448–50
Memorandum of Understanding, 452
NASA-ESRO agreement, 439–40
origins of, 427–33
pallet modules on, 448
pallets, 456
POWER TO EXPLORE: HISTORY OF MSFC

- Phase C/D design and development, 437
- planning missions for, 441–44
- schedule of missions, 454
- science experiments, 442
- selection of name, 437
- selection of prime contractor, 437–38

Spacelab Mission Operation Control facility, 463
- technical challenges of, 448–51
- unconventional nature of NASA-European relationship, 439–40
- weight problem, 438–39, 451
- workforce, ESA and NASA, 445

Spacelab 1, 443, 457–60
- experiments and equipment, 458–60
- integration of payload, 457
- payload of, 454–55
- prelaunch preparations, 457–58

Spacelab 2, 450, 455
Spacelab 3, 456, 462–63
- experiments and equipment, 461–62

Spacelab 4, 454
Spacelab 5, 454
Spacelab 6, 454
Spacelab Program Office (MSFC), 437

SPAR
- See Space Processing Applications Rockets

Sparkman, John, 14, 122, 125, 282
Speer, Fred, 242–43, 245, 249, 488, 495, 501–03, 513
Sperry Incorporated, 491
Spherical aberration, 510–12, 515
Spitzer, Lyman, 473, 477
Splawn, James, 208
Sputnik, 23–24
Sputnik I
- launch of, 22
Sputnik II, 23
SRB. See solid rocket booster (SRB)
SRM. See also solid rocket booster; solid rocket motor
Stalin, Joseph, 8
State University of Iowa, 226
State-of-Union Message, 390
Static Test Tower, 91
Staver, Robert, 9
Stennis Space Center, 412
Stewart, Frank, 288
Stockman, David, 260, 555
Stoewer, Heinz, 438

702
Stofan, Andrew J., 225, 558, 561, 569–70, 578
 on Space Station power module, 547
Stower, Heinz, 447
Structures and Dynamics Laboratory, 602
Structures and Mechanics Laboratory, 40–42, 510
Structures and Propulsion Laboratory, 94, 345, 412, 492
Stuhlinger, Ernst, 6, 15, 19, 40, 49, 56, 140, 148, 179–80, 184, 186, 212, 216, 225,
 227, 229, 233–34, 241, 406, 474, 486
 and advocacy of MSFC work in payloads, 429
Styles, Paul, 151
Sullivan, O'Keefe, 570–71
Super Guppy, 92
Sutter, Joseph F., 393
Systems Analysis and Integration Laboratory, 506
Systems Dynamics Laboratory, 481
Systems Engineering Laboratory, 214
T
Tanner, Ray, 579
Teacher-in-Space, 390
Technology test-bed, 412
Tekite II, 201
Teleconference 27 January 1986
 See Solid rocket motor (SRM) joints, Teleconference
Teledyne Energy Systems, 399
Teledyne-Brown Engineering, 119, 128, 413, 574
Teleoperator retrieval system, 213
Tennessee Valley Authority, 4, 17
Tepool, Ron, 300
Tessmann, Bernard, 169
Test Laboratory, 42, 46, 79, 94, 97, 227, 237, 314–15
Test methods, 43, 46, 91–94
 and costs, 46
 See also quality methods
Thiokol
See Morton Thiokol Incorporated (MTI)
 See Morton-Thiokol Chemical Corporation
Thomas, John W., 391, 394–95, 413, 415, 418
Thomason, Herman, 214, 301, 319
 as MSFC director, 408–09
 as SSME project manager, 298–301
 becomes MSFC director, 570
Thompson, Robert F., 188–89, 216, 293
Thomson, Jerry, 272–73
 on SSME development, 299, 301
POWER TO EXPLORE: HISTORY OF MSFC

Thor missile (Air Force), 21, 23
Tiger team, 193
Tiller, Werner G., 159
Titan III-C, 341–42
Toftoy, Holger, 9, 11–12, 14, 19
Tompkins, Phillip K., 403
Total Quality Management, 48
Tousey, Richard, 234
Transient Pressure Test Article (TPTA), 416–17
Trichel, William, 9
Truman, Harry S., 11
TRW, 193, 242–43, 574
Tsiolkovsky, Konstantin, 528
Tuskegee Institute, 119
Twin-pole sun shield, 208–210
U
UHURU x-ray satellite, 243
United Space Boosters Incorporated (USBI), 292, 309, 413
United Technology Center, 291
University of Alabama, 17
University of Alabama Huntsville Center, 120
University of Alabama in Huntsville (UAH), 129, 153, 488
V
V–2, 5, 7–13, 26
American testing of, 12–13
and origins of Redstone missile, 19
Van Allen, James A., 23, 226
Vandenberg Air Force Base, 400
Vehicle Assembly Building (VAB), 317
Verschoore, Chuck, 306–07
von Braun team, 16–17, 153, 162–64
and arsenal system, 19
and early Space Station concepts, 529–31
and Project Paperclip, 11
and Project Vanguard, 20
and RIFs, 159
at White Sands, 12–14
transfer from ABMA to NASA, 25–30
transfer to Huntsville, 14–16
1952 Collier’s articles on space travel, 20
and arsenal system, 19
and civil rights, 119, 121–23
and communications, 50–51
and early Space Station concepts, 527, 529–30, 532–34

704
Index

and Huntsville development, 129
and launch of Sputnik I, 22–23
and lunar landing mode decision, 55–59
and management system at Peenemünde, 6
and manpower crisis, 141–42
and Nazi Party, 7, 155
and post-Apollo planning, 137–39, 151–52
and Project Paperclip, 8–12
and Shuttle planning, 277
and Skylab, 180, 186–87, 189, 202–03
and World War II German rocketry, 5–8
as space publicist, 49–50
at White Sands, 13–14
becomes director of MSFC, 30
early experience in rocketry, 5
early Shuttle and Space Station concepts, 274
leadership style, 48–49, 51
leaves MSFC, 152–53
legacy at MSFC, 153–55
on arsenal system, 42
on artificial gravity in Space Station, 535
on Center reorganization, 144–46, 148
on Center rivalry, 139
on dirty hands leadership, 48
on quality control, 44
on the benefits of space exploration, 50
relationship with Rees, 156–57
retirement of, 163
Space Station
debate over artificial gravity, 534–35
space telescope, 473–74
von Saurma, Ruth, 15, 48
von Tiesenhausen, Georg, 6, 49, 58, 144, 153, 155–56, 162
on Low as MSFC adversary, 149
Voyager, 139–40
W
Waddy, Joseph, 143
Wallace, George C., 116–17, 120, 123–25
Wallops Island, 138, 166, 240
War Eagle, 419
Warren, A. P., 208
Wear, Lawrence, 366, 376
Webb, James, 45, 59, 65, 68, 138, 145, 148, 150, 229, 390
and civil rights, 117–19, 121–25
relationship with von Braun, 155
Weekly notes, 51, 153, 295
Weeks, L. Michael, 353, 405
POWER TO EXPLORE: HISTORY OF MSFC

Weiler, Ed, 511
Weinberger, Caspar, 556
Welch, James, 500, 503, 505
Welding technology, 87, 89–90
on ET, 321–22
White Sands, 9, 12–13, 226, 252
Wiesman, Walter F., 13, 16
Wiesner, Jerome, 58–59
Williams, Frank, 180, 234, 273, 529
Willoughby, Will, 398
Winch, John, 106
Wojtalik, Fred, 506, 509, 514
Wood, Walt, 576
Wyle Labs, 413
X
X-ray Calibration Facility, 247
Y
Yardley, John, 301, 315
Yardley, John F., 438
York, Herbert F., 27–28
Young, John, 409, 417
Z
Zoller, Lowell, 238, 260, 445–46